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In the study of long waves on the surface of a viscous fluid it has been 
assumed that their oscillation frequency and velocity can be determined by 
the formulas for an ideal fluid. The attenuation factor can thus be deter- 
mined from energy considerations. 

Here we consider the equations of motion for long waves in a system of 
cylindrical coordinates. Formulas have been found for the oscillation fre- 
quency and att~uatlcn factor. The free surface form, the trajectories of the fluid 
particles, the pressure and the velocity components were determined. 

The problem of cylindrical waves on the surface of a viscous fluid of 
finite depth has been reduced in [i] to the solution of Equations 
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These e q u a t i o n s  and boundary  c o t ~ l i t i o n s  can be c o n s i d e r a b l y  s i m p l i f i e d  i f  
the usual as sumpt ion  f o r  long waves [2] is made. 

By neglectin$ the inertia and viscous forces in the third equation of sys. 
tem (1), it carl be integrated to yield 

P, = P0 + Pg~ (4) 

where C is the ordinate z = C(r,V,t) of the free surface. 

By eliminating the pressure from the first two eq~tions of system (1) 
with the aid of (~), we introduce the new unknown C C(r,~,~). Since 
~C/b# - ut(r,~,O,~), then multlpylng the last equation of ~I) by dz and 
integrating it from • - -- h to • - 0 , we obtain a third equation that 
contains the same unknowns ~, v, and v~ 
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This last equation enables one to eliminate C from the first two. More- 
over, in view of the assumptions already made, we can neglect the second term 

in ghe first two boundary conditions (2]. 

Thus we are led to the problem of solving Equations 
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with the boundary conditions 

,Or r 0 %  
Oz - -  O ,  Oz - -  O, for z - -  O, % = :  O, % =  0 "for z =  ~ h  (7) 

~n employing the Fourier method, we will seek the solution of system (6) 
in the form 

n t 
v r = e ~' cos n~ [Jn- ,  (ar) - -  Jn+x (ar)] Z~ (z), v~ = -~-e k sin n ~ J n  (at) Z, (z) (8) 

where a and n a r e  given positive numbers, with n an integer. 

Substituting $hls solution into (6)and using the recurrence formulas for 
Bessel functions, it is found that the functions Z, and Zs must satisfy 
Equations 

a 'h  2ah ( b~ a k ) 
Z l t t  - -  b2Zl = g "-~ Zl*' Z2"--b~Z~ = - -  g ~ Zl* = + V  ' Zl* = Zz (z°) (9) 

The solution of system (9) can be taken in the form 

o2h CebZ 2ah 
Z, = Ae  bz ~c- Be -bz -- g ~ Zz*, Z~ = -F- D e-bz -{- g ~ Z~,* (t0) 

After using the boundary conditions (7) in order to determine the arbi- 
trary constants A, B, C and D, we obtain 

a2hZ1* ah Z** 
A = B = g 2kvb%o~;bh, ' C = D  = - -  g kvb~,~e~bh 

Then, substitution of Expressions (I0) for Z~ and Z 2 into (8) leads to 

ha2Z* * ~t [zzalCz 
or=:  g ~ e cosnq~ [Jn_l (ar) - -  Jn+l (ar)] ~ - ~  - -  i ]  

2hanZx* kt ( t  eo~ bz~ 
% --  g ~  e- sin ngiJn (at) ~ ~ bh] (1t) 

The vertical component of the velocity can be obtained from the last equa- 
tion in (I) by replacing u, and v~ in it by their values in (II) and then 
integrating the resulting expressio with respect to z • These calculations 
yield 

2haaZx * ~.t ( ,is~bz -}- ~ . b h  ) 
v z : g --£~,y'-- e cOS n q J  n (ar) \ b~shbh - -  z -- h_ (t2) 

The form of the free surface can be determined by integrating Expression 
(12) with respect to time after having set z = 0 . Carrying out this cal- 
culation and taking the real part, we obtain 

(r, % t) = Ne at J n  (at) cos ttq~ sin (at + e) 

( 2ha ] Z** I @ Re Z** + a Im Z,* (~+ i s = k )  (13) 
N - -  ] / - ~  , u m e =  ~ R e Z ~ , _ ~ ) I m Z * *  ' 

By substitution of this value for ~ into (#) we find the pressure 
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Pl  = Po + Pg N e ~  J n  (aD cos n~  s in  (st -4- e) 

Considering the free surface at a sufficiently large dlstancq from the 
origin of coordinates we can take only the first term in the asymptotic expan- 
sion for J, in (13). Thus we obtain the approximate expression 

(r, ~,  t) ~ N ] / ' ~ e  at cos n~  cos (a t  - -  1Aa - -  %n~) s in  (¢t -¢- e) (14) 

It is clear from (14) that as r increases the amplitude of oscillation 
decreases as 1/z~. The nodal lines of the free surface will consist of 
radii with angular spacing N/n , a~id concentric circles with centers at the 
origin of coordinates and spaced at distances of w/u from each other. 

It is easy to find the trajectories of the fluid particles if one first 
Intergates Expressions (ll) and (12). Because the particles perform small 
oscillations, the same method of integration as that in [ 2] leads, after some 
calculation, to the results 

r - -  r o = Re St s in  ~ t  -~- el) -~- R1, ~ - -  ~o = n ~ e S t  s in  (at ~ es) q- n(I), 

s - -  z o = Ke  St s in  (~t q- %) ~- K 1 (15) 

where R, RI, (D, ~i, K, g I, e~, ez, e 3 are certain constants and ro, ~o and z o are 
the coordinates of the particle in the equilibrium state. From the obtained 
formulas it is clear that each particle executes a damped oscillation about 
its equilibrium position. 

The solution of the axisymmetrlc problem is obtained as a particular case 
by setting n = 0 in all above formulas. 

The numbers Z** = Z,(z ° ) and ~ appearing in Formulas (Ii) and (12) have 
not yet been determined. For the determination of z ° , set • = •o in the 
first of Formulas (i0). This leads to the relation 

/kvb2 t )  ( t6)  oo,h b z °  = oo, bh + 

As is clear from Formula (8), coefficient k indicates how the overall 
motion changes with time. This coefficient can be determined by ~ans of 
the identity o 

U r ( r , ~ , z ° , t ) = - ~  U r ( r , T ,  z , t )  dz  (17) 
-h  

Replacing u, in (17) by its value (ii) and taking account of relation 
(16), an integration leads to Equation 

ga ~ (tanhbh - -  bh) = hvb a (t8) 

which serves for the determination of k - ~  ~'~ i~. 
This equation can be simplified somewhat if insteau of the unknown ~ we 

take 
= b h  = h ] / ' a  s --4 u k / v (19) 

By making this substitution, (18) can be written in the form 

p8 (,6s _ as) ~ + ~ s  gh 3 (~ - - , ~ . h ~ )  = 0 (20) 

Equation (20) is much simpler than Equation (2.4) obtained in [1] for the 
determination of the same unknown. The roots of this equation depend on two 
parameters. The parameter a - a~  - 2w~/k characterizes the ratio of the 
depth of fluid to the wavelength and is very small for long waves. The para- 
meter gRsv-a characterizes the ratio of the depth of fluid to the viscosity 
and can assume a wide range of values. 

Xf ~ - ¥ + $6 is a root of Equation (20), then it follows from Formula 
(19) that ~he frequency of oscillation s and the attenuation factor ~ are 
given by Express~ons 
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= 2v?eh-', 0 = v (7'.-- =' -- ~)h~ (21) 

from which It Is evident that an oscillatory motion of the liquid wlll take 
p l a c e  o n l y  when t h e  rOOtS o f  E q u a t i o n  (20)  a r e  complex .  An a r ~ a l y s i s  of 
t h e  n u m e r i c a l  s o l u t i o n  o f  t h i s  e q u a t i o n  f o r  v ~ l o u s  v a l u e s  o f  t h e  p a r a m e t e r s  
l e a d s  t o  t h e  c o n c l u s i o n  t h a t  t h e  r o o t s  o f  (20)  a r e  c o a p l e x  when ~ ( v ~ ) - s ~  

4 , 8 4 - | 0  -s  sacS/ore  . Whence I t  f o l l o w s  t h a t  t h e  occm~rance  o f  waves  o f  a 
g i v e n  l e n g t h  i n  a f l u l d  o f  a h i g h e r  d e g r e e  o f  v i s c o s i t y  r e q u i r e s  a I ~ E e  
d e p t h .  By r e a r r a n g i n g  t h e  p r e c e d i n g  c o n d i t i o n  i n  t h e  fo rm ), < 143 h ~-~.  
one comes t o  t h e  oonc lus lo rL  t h a t  i n  a f l u i d  o f  g i v e n  d e p t h  t h e  W a v e l e n g t h  i s  
bounded f rom a b o v e ,  w h e r e a s  t h e  waves  i n  an I d e a l  f l u i d  a r e  n o t  s u b j e c t e d  t o  
any such  r e s t r i c t i o n .  

By s ~ i n g  t h e  t a b l e  o f  s o l u t i o n s  o f  E q u a t i o n  ( 2 0 ) ,  one a l s o  comes t o  
t h e  c o n c l u s i o n  t h a t  when Gslhav -s ~ 3000 t h e  r o o t s  o f  t h i s  e q u a t i o n  have  a 
real part T ~ .5. Since tanh x - i when x ~ 5 (accurate to the fifth sig- 
rklficant digit), the transcendental equation (20) can, in this case, be 
transformed into the algebraic equation 

Taking the fluid to be ideal as a first approximation, we will seek the 
solution of (22) In the form of the series 

= ~ l M  "t- ~ ,  "Jl- ~ , M  -1 -t" • • • ( M  ---- a ' g h * v  ~ )  (23) 

Substitution of solution (23) into Equation (22) and identification of 
coefficients of llke powers of M furnishes the following system of equa- 
tions 

whose solutions are 

~, = '1, Y '2  (l + i), ~, = - - ' /~ ,  
~ = % ~ .  (t - -  i) (~' - -  %), ~, = V,i ( %  - -  ~ ' ) ,  • • • 

By substituting the found values of B, into series (23) and then us~ 
Formulas (21) we find for the attenuation factor and the frequency of Oscil- 
lation 

t l ' = - -  ~ l . l , ~  g i # ,  I ~ I +~÷~+... 

1 1 l 3 1 

a = - ~ - - ~  v ~. gTh- Z --... (24) 

The particular case ~ - O Is that of an ideal fluid. From the last 
formula It Is evident that the frequency of oscillation in a viscous fluid 
Is lower than that in an ideal one. 
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