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In the study of long waves on the surface of a viscous fluid it has been
assumed that thelr oscillation. frequency and velocity can be determined by
the formulas for an ldeal fluid. The attenuation factor can thus be deter-
mined from energy considerations.

Here we consider the equations of motion for long waves in a system of
cylindrical coordinates. Formulas have been found for the oscillation fre-
quency and attenuation factor. The free surface form, the trajectories of the fluid
particles, the pressure and the velocity components were determined.

The problem of cylindrical waves on the surface of a viscous fluid of
finite depth has been reduced in [1] to the solution of Equations
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with the boundary conditilons
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These equations and boundary comditions can be considerably simplified if
the usual assumption for long waves [2] 1is made.

neglecting the inertia and viscous forces in the third equatlon of sys-
tem !(1), it can be integrated to yield

L= po+ pgt (%)
where ( 1s the ordinate z = ((r,p,t) of the free surface.

By eliminat the pressure from the first two equations of system (1)
with the aid of ; we introduce the new unknown = {(r, s Since
3¢/t = v, (r,p,0,t then multipying the last equatlon of ?1 by dr and
integrating it from & = —h to g = 0 , we obtain a third equation that
contains the same unknowns ¢, v, and Y0
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This last equation enables one to eliminate { from the first two. More-
over, 1n view of the assumptions already made, we can neglect the second term
in the first two boundary conditions (2¥.

Thus we are led to the problem of solving Equatlons
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In employing the Fourler method, we will seek the solution of system (6)
in the form

n
ki -
. o= 5 ¢ sinn @J, (ar) Z3(z) (8)
where @ and 5 are given positive numbers, with »n an integer.

Substituting thls solution into (6) and using the recurrence formulas for
Bessel functions, it is found that the funetions 2, and 2, must satisfy
Equations

azh 2ah k
2 —vn =g Rt L= — g i (Beedy, =1 =)
The solutlon of system (9) can be taken in the form

v, = e* cos ng [J gler) — T, @) 2 (5, v

2 2ah
Zy = A 4 B — g 2%, Zy=C* + D grmy 2 (10)

After using the boundary conditions (7) in order to determine the arbi-
trary constants 4, p, ¢ and D, we obtain

a*hZ* ah Z,*
A =B = ¢ Gt * . ¢ TP T T8 wbicombh

Then, substitution of Expressions (10) for 2, and 2, into (8) leads to

ha?Z* coshbz
= B gt € 08 0 Uy (@r) — Ty )] (S 1)

2hanZy* 4, . cosh b2
Yo = & it ekt sin n@J, {ar) (:1 -m) (11)
The vertical component of the veloclty can be obtained from the last equa-
tion in (1) by replacing v, and v, in it by thelr velues in (11) and then
integrating the resulting expressiog with respect to 2z . These calculations

yield ; :
2ha¥7,* sinhbz - sinhbh
v, = g -—~_a—~—21 ekt cos ngJ  (ar) e i—h (12
z kvb n beosh bh

A

The form of the free surface can be determined by integrating Expression
(12) with respect to time after having set z = O . Carrying out this cal-
culation and taking the real part, we obtaln

L (r, @, t) = Ne® J,, (ar) cos ng sin (ot + €)

2ha | 2,* | O Re Z,* + o Im Z,* . )
= e, = e el =k
(N V#E Lo une cRe Z* — O Im Z* S+ i

“13)

By substitution of this value for ¢{ into (4) we find the pressure
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P = Py + pgNe® J, (ar) cos n@ sin (st - &)

Considering the free surface at a sufficiently large distance from the
origin of coordinates we can take only the first term in the asymptotlc expan-
sion for g, in (13). Thus we obtain the approximate expression

tr,p,t) =N 'V 2/ nar e cos nQ cos (ar — Y4t — Yenn) sin (ot 4 €) (14)

1t is clear from (14) that as r 1ncreases the amplitude of oscillation
decreases as 1/p* . The nodal lines of the free surface will consist of
radii with angular spacing n/n , and concentrlc circles with centers at the
origin of coordinates and spaced at distances of n/h from each other.

It i1s easy to find the trajJectories of the fluid particles 1f one first
intergates Expressions (11) and (12). Because the particles perform small
oscillations, the same method of integration as that in [2] leads, after some
calculation, to the results

r — rs = Re® sin (ot 4 &) + Ry, ® — ¢ = n®e? sin (0t - e9) + nd,
3 — zy = Ke® sin (ot + &) + K, (15)
where R, R, @, ®,, K, K, &, €, €3 are certaln constants and r,, and 2z, are

the coordinates of the particle in the equilibrium state. From the obtained
formulas it 1s clear that each partlcle executes a damped oscillation about
its equilibrium position.

The solutlon of the axisymmetric problem is obtalned as a particular case
by setting n = O 1n all above formulas.

The numbers Z,* = Z,(2°) and x eppearing in Formulas (11) and (12) have
not yet been determined. For the determination of g°, set g = 2° 1in the
first of Formulas (10). This leads to the relation

kvb?
cosh 529 = coshbh (W+ 1) (16)

As 1s clear from Formulas (8), coefficient % 1indicates how the overall
motion changes with time. This coefficlent can be determined by ~ans of

the identity 0

1 ¢
v, (r,@,2° t)= ’y S v, (r,o, z, t) dz 7
~h

Replacing v, in (17) by its value (11) and taking account of relation
(16), an integration leads to Equation

ga? (tanhbh — bh) = hvb® (18)

which serves for the determination of k= ¢ 3 ic.
This equation can be simplified somewhat 1f insteau of the unknown j» we

take o
B=bh=hVa+Ek/v (19)

By making this substltution, (18) can be written in the form
B® (B2 — a?) v 4 o2 ghd (§ —taohfl) = O (20)

Equation (20) is much simpler than Equation (2.4) obtained in [1] for the
determination of the same unknown. The roots of this equatlon depend on two
parameters. The parameter q = gh = 2nh/)\ characterizes the ratio of the
depth of fluid to the wavelength and is very small for long waves, The para-
meter gh?y~? characterizes the ratio of the depth of fluld to the viscosity
and can assume a wide range of values,

If B =y + 18 1sa root of Equation (20), then it follows from Formula
(19) that the frequency of oscillation ¢ and the attenuation factor o are
given by Expressions



220 1.P. Oborotov

= 2vpbh-?, % =v @ —a®— s9rs (29)

from which 1t 1s evident that an oscillatory motion of the liquid will take
place only when the roots of Equation (20) are complex. An anslysis of
the numerical solution of this equation for various values of the parameters
leads to the conclusion that the roots of (20) are complex when i® (vA)-2*>»
> 4.84-10-% sec®/cm . Whence it follows that the occurrance of waves of a
given length 1n a fluid of a higher degree of viscousity requires a large
depth. By rearranging the preceding condition in the form A < 143 A'w~1
one comes to the conclusion that in a fluid of given depth the wavelength is
bounded from above, whereas the waves in an ideal fluid are not subjected to
any such restriction.

By examining the table of solutions of Equation (20), one also comes to
the conclusion that when atghdv~? > 3000 the roots of this equation have a
real part T > 5. 8ince tanh x = 1 when x > 5 (accurste to the fifth sig-
nificant digit), the transcendental equation (20) can, in this case, be
transformed into the algebraic equation

PPy —at)viatight (B —1)=0 (22)

Taking the fluid to be ideal as a first approximation, we will seek the
solution of {22) in the form of the serles

B=pM+ P+ BM+ ... (M = adghdv™) 23)

Substitution of solution (23) into Equation (22) and identification of
coefficlents of like powers of N furnishes the following system of equa~-
tions

B* + B, =0, 5B,%Bs + By — 1 =0, 5p14P, -+ 1083y —alp® + P =10
581 By + 108,%Bs (By* + 2B,By) — 302 BBy + B =0, ...
whose solutions are
_ fr=1s Vi (14 0, Ba = —4
Bs=1Ya VZ(1 — i) (a? — %), o = Yai G/a — @), ..

By substituting the found values of §, into series (23) and then using
Formulas (21) we find for the attenuation factor and the frequency of oscil-

lation ! 1 5 L
¢ 2L L2 1, oy
=“(7"2"36’"‘ YAttt ‘*‘)
1 1 1 3 1
2 —_ V5 e T T, T
s=FVeh—gnrivigih ¢4 7 —. . (24)

The particular case y = O I8 that of an ideal fluid. Prom the last
formula i1t is evident that the frequency of oscillation in a viscous fluid
is lower than that in an ideal one.
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